- I. Carrizosa, M. F. Ebel, J. A. Odriozola and J. M. Trillo, Inorg. *Chim. Acta, 94,115* (1983).
- S. Bernal, R. Garcia and J. M. TriIlo, *React. Kinet. Catal. Lett., IO, 125* (1979).
- R. Alvero, S. Bernal, I. Carrizosa, J. A. Odriozola and J. M. Trillo, J. *Less Comm. Met.,* in press.
- J. A. Odriozola, *Ph. D. Thesis,* University of Seville. Seville (1981).
- D. Touret and F. Queyroux, *Rev. Chem. Miner., 9, 883* (1972).

Dll

A Study of Decomposition of $Ce(In_{1-x}Sn_x)_3$ in Air **Accompanied by Whisker Growth and Measurement of Electrical Resistivity**

J. SAKURAI*, S. TAKEDA and Y. KOMURA

Faculty of Science, Hiroshima University, Higashi-sendamachi, Naka-ku, Hiroshima, 730, Japan

 $CeSn₃$ is an interesting compound which shows the mixed valence phenomena. One of the complexities in this sample is that it decomposes rapidly in air. For example, a contradiction in Mössbauer measurements by different groups on this sample was considered to originate from this decomposition [l]. Thus we must be careful in understanding its properties.

The purpose of the present study is to see how the decomposition of $CeSn₃$ and its pseudo-binary alloys, $Ce(In_{1-\mathbf{x}}Sn_{\mathbf{x}})_{3}$, actually progresses, and to see how the decomposition is reflected on the electrical resistivity.

Ingots of samples are prepared by arc-melting in Ar atmosphere. X-ray powder diffraction showed that all samples of $Ce(In_{1-x}Sn_{x})_{3}$ except pure $CeSn_{3}$ are of a single phase having a cubic $Cu₃Au$ type crystal structure.

In the sample of $CeSn₃$, diffraction peaks due to β -Sn as an impurity phase were observed in addition. Content of β -Sn was found to change drastically with the time elapsed from the powder preparation. X-ray counts, at β -Sn diffraction position, of a quickly prepared powder are at the background level for the first several minutes and then gradually increase. Peak intensities of β -Sn are already comparable to those of CeSn₃ after a couple of hours. Peaks of CeSn₃ completely disappear and only those of β -Sn replace them after two days. The decomposition of $CeSn₃$ in air and the accompanying precipitation of β -Sn progress rapidly. Ce atoms are supposed to be oxidized and/or hydrated to form an amorphous material unobservable by X-ray diffraction. Decompositions of all samples $Ce(In_{1-x}Sn_{x})_{3}$ except $CeSn_{3}$ are found to be much slower.

Ingots of $CeSn₃$ kept in a glass tube under a vacuum of 10^{-6} torr stay shiny for months. On the other hand, ingots of $CeSn₃$ in air lose rapidly the metallic lustre and in a few days they look like covered with fur or mould. Under an optical microscope, the ingots are seen to be covered with a flock of small fragments with irregular shapes mixed with strictly straight rods.

These rods were picked up and observed under a transmission electron microscope. They turned out to be β -Sn whiskers; electron diffraction patterns have tetragonal symmetry and lattice constants, a and c, agree with the reported values of β -Sn with the rod axis along [101] crystallographic direction. Size of these whiskers varies; the diameter is typically of $0.5-1.0 \mu m$ and the length is 1 mm at most. Thus, a part of β -Sn decomposed from CeSn₃ is found to exotically grow into whisker.

Ingots of $Ce(In_{1-x}Sn_x)_3$ whith $x \neq 0$ keep shiny for longer period. Rare whiskers are found on ingots of CeIns. Still rarer whiskers are found on ingots of $Ce(In_{1-x}Sn_x)$ ₃ with x neither 1 nor 0

We have also observed the ingot surface by a scanning electron microscope. Whiskers with length of several hundred μ m are observed on a fresh surface of $CeSn₃$ cracked only several minutes before. This fact shows the rate of growth of the whiskers is very rapid. Besides, numerous eruptions with diameter of about 1 μ m are observed on the fresh surface of Ce- Sn_3 as well as all other samples of $Ce(In_{1-x}Sn_x)_3$. They look like pebbles under the scanning electron microscope. Probably some eruptions somehow gain their heights and are thought to develop into whiskers.

We have measured electrical resistivity ρ of Ce- $(\text{In}_{1-x}\text{Sn}_{x})_{3}$. Samples of a typical dimension 1×1 $X 15$ mm³ are cut from the ingots. Measurements were made by the standard dc four prove method. As the decrease of temperature, ρ of all samples Ce- $(\text{In}_{1-x} \text{Sn}_x)$ ₃ was found to decrease sharply at a critical temperature around 4.2 K. Fig. 1 shows several examples. $Ce(In_{0.4}Sn_{0.6})_3$ looks like as if it were

Fig. 1. Electrical resistivity ρ of three samples of Ce(In_{1-x}- Sn_x)₃ plotted as a function of temperature T.

superconductor; ρ suddenly decreases below 5.5 K and tends to zero below 2 K. Nevertheless, the amount of the decrease of *p* is found to depend on the surface state. The sample which is gently rubbed by a soft tissue paper so that it becomes more shiny immediately before mounting on the sample holder, has much smaller decrease of ρ . This is shown for ρ of $Ce(In_{0.5}Sn_{0.5})_3$. Curve A is with this rubbing and curve B is without. Thus we conclude that the superconducting state is not due to bulk sample, but is due to deposits of In-Sn alloy on the sample surface. These deposits are likely to be the eruptions on the sample surface observed by scanning electron microscope. In Ce(In_{0.3}Sn_{0.7})₃, the decrease of ρ is clearly seen to have two steps. This is understood because the In-Sn alloy is eutectic and $In_{0.3}Sn_{0.7}$ consists of two components with different compositions and with different superconducting temperatures. The values of these two temperatures are near to those reported [2] on In-Sn alloys, and prove a small amount of this alloys actually deposited on sample surface.

- 1 G. K. Shenoy, B. D. Dunlap, G. M. KaIvius, A. M. Toxen and R. J. Gambino,J. *Appl. Phys., 41* (1970) 1317.
- 2 S. C. Harris, Proc. *Roy. Sot. London A, 350* (1976) 267.

D₁₂

A New Family of Sheet Structures: the Oxyselenides Formed by a Rare Earth and a Second Metal

S. BÉNAZETH, J. FLAHAUT*, M. GUITTARD and P. LARUELLE

Laboratoire de Chimie Minerale Structurale associe au CNRS, Facultd de Pharmacie, 4, avenue de l'observatoire, F75270 Paris Cedex 06, France

Sheet structures are observed in oxyselenides formed by La and a second metal of the IIIA-VA groups of the periodical classification.

 $(LaO)GaSe_2$ orthorhombic pseudo tetragonal cells $\left[\text{(LaO)lnSe}_2\right]$ type of the (LaO)GaSe,

- $(LaO)₄Ge_{1.5}Se₅$: orthorhombic cell of the $(NdO)₄$. Ga_2S_5 type, with disordered arrangement of Ge atoms on the Ga sites.
- $(LaO)₂SnSe₃$: orthorhombic pseudo tetragonal cell of the $(LaO)₂SnS₃$ type.
- $(LaO)SbSe_2$: tetragonal cell of the $(CeO)BiS_2$ type.

All these structures are formed by alternating (LaO) sheets and $(M_{\star}Se_{v})$ sheets $(M = second$ metal). The (LaO) sheets are formed by $La₄O$ tetrahedra which earths. The structure of $(LaO)GaSe₂$, which is only observed with selenides, is described: the cell is orthorhombic space group P₂,ab; $a = 5.951(3)$; $b =$ 5.963(3); c = 12.256(7) Å; Z = 4; d_x = 5.84 Mg m⁻³; $M(MoK\alpha) = 31.3$ mm⁻¹.

The structure was established on single crystal data and refined by a least-squares procedure; the final R value is 0.07 on 523 independent reflections. The structure is formed by alternating (LaO) and $(GaSe₂)$ layers, parallel to the (001) plane.

D₁₃

Lanthanide Oxides: Effect of $CO₂$ on the Yb₂O₃ Hydration

I. CARRIZOSA, J. A. ODRIOZOLA, J. M. TRILL0

Inorganic Chemistry Department, Faculty of Pharmacy, University of Seville, Seville, Spain

and M. F. EBEL

Institut fur Angewandte und Technische Physik. Technische Universitat Wien, Vienna, Austria

Recent results in our laboratory $[1, 2]$ have proved that the heaviest terms of the 4f series oxides undergo bulk hydration and carbonation when exposed to the atmospheric air, in contradiction with the previous literature [3]. The main difference between the lighter and the heavier 4f oxides is related to kinetic aspects.

In the case of the hydration of the $La₂O₃$, Rosynek [4] has shown a certain inhibition effect exerted by the $CO₂$. In the present paper, the interaction of the Yb_2O_3 with H_2O , H_2O/CO_2 mixtures and atmospheric air has been examined through XPS and TPD measurements. The effect of $CO₂$ on the hydration of ytterbium sesquioxide is discussed in the light of those results.

Ytterbium hydroxycarbonate was precipitated with NH₃ from nitrate solutions. Yb_2O_3 was finally prepared by calcining the precipitate in air at 873 K. The sample here studied was characterized by X-ray diffraction, thermogravimetric (TG) and differential thermal analyses (DTA), IR spectroscopy and pore size distribution. Data about preparation and characterization are reported in [1].

Details concerning the temperature programmed decomposition (TPD) device are given in [5]. All the experiments were carried out in helium flow (30 ml